
Santhi Chebiyyam .Int. Journal of Engineering Research and Applications                    www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 6) April 2016, pp.43-45 

 www.ijera.com                                                                                                                                  43|P a g e  

 

 

Design of 4:16 decoder using reversible logic gates 
 

Santhi Chebiyyam*, K Bipin Sai Kumar** 
*(Asst. Professor, Department of Electronics and communication engineering, CMR Institute of Technology, 

India 

** (Department of Electronics and Communication engineering, CMR Institute of Technology, India 

 

ABSTRACT 
Reversible logic has received great importance in the recent years because of its feature of reduction in power 

dissipation. It finds application in low power digital designs, quantum computing, nanotechnology, DNA 

computing etc. Large number of researches are currently ongoing on sequential and combinational circuits using 

reversible logic. Decoders are one of the most important circuits used in combinational logic. Different 

approaches have been proposed for their design. In this article, we have proposed a novel design of 4:16.  
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I. INTRODUCTION 
Landauer [1] showed that the heat 

generated during computation is not due to the 

processing of bits, but due to the loss of 

information. Wiping of each bit of information 

causes Ktln2 amount of heat dissipation where k is 

Boltzmann constant = 1.3805 x 10
-23

 J/K and T is 

the temperature in absolute scale. While this heat 

may be negligible for a single wipe of information, 

in this modern VLSI design, where many chips are 

arranged in small region and millions of 

instructions are processed per second, the 

information loss and consequently the heat 

generation is formidable. 

Bennet [2] later showed that this heat 

dissipation can be avoided by using reversible 

computation. This proof by Bennett has bed to an 

extensive research on reversible logic. Most 

prominent applications of reversible logic are seen 

in quantum computation, low Power CMON 

Design,nanotechnology and DNA computing. 

Quantum networks are composed of 

quantum logic gates each gate performing an 

elementary unitary operation on one, two or more 

than two state quantum systems called qubits. Each 

qubit represent an elementary unit of information 

corresponding to the classical bit values 0 0and 1. 

Any unitary operation is reversible and hence 

quantum arithmetic must be built from reversible 

logic components [3].  

Quantum cost, delay number of constant 

inputs and garbage outputs are the most important 

cost metrics of reversible computing. Garbage 

outputs are the outputs which are present only to 

maintain reversibility and do not perform any 

useful operations. Number of gates is not a good 

measure of cost, since more than one gate can be 

taken together to form a new gate, thus reducing 

the gate count. 

Quantum gates involve many qubits are 

extremely difficult to build. Hence quantum cost is 

an important metric to build quantum gates. 

Quantum cost is the number of elementary 

quantum gates required to build the game .1*1 

reversible gates viz. NOT gate have quantum cost 0 

while 2*2 gates viz. Controller-C, Controlled-V, 

Controlled-V
+
, CNOT gate etc. have quantum cost 

1 [4]. 

Design of Combinational sequential 

circuits have been ongoing for some time. Various 

proposals are given for the design of adders, 

subtractors [5], multiplexers [6], decoders etc. 

Recently a new reversible SG gate [7] has been 

proposed. Though the provided design is of 4 qubit 

gate, the encoding logic enables the gate to be 

extended to n qubits gate for any n > 4 and the 

authors have shown this gate to be universal. 

In this paper, we have proposed a novel 

design of 4:16 whose quantum cost is less than the 

previous design 

 

II. BASIC REVERSIBLE GATES 
Reversible gates are n*n logic gates where 

the input vectors I =I (i1, i2, …in) are mapped to the 

output vectors O = O(o1, o2,…,on). The mapping is 

bijective, i.e., every input is mapped to an output 

and every output has a unique input mapped to it. 

This the outputs of reversible gates are 

permutations of the inputs. Fan-outs are not 

allowed in reversible circuit since they violate one-

to-one mapping. Some basic reversible gates are 

introduced in this section. 

 

A. NOT Gate 

The Simplest reversible gate is NOT gate. 

It is a 1*1 gate with quantum cost 0. NOT gate 

simply flips the input as shown in Fig.1. 
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Fig. 1. NOT gate 

 

B. Controlled-v and Controlled
†
 Gate 

Controlled-v and Controlled
†
 gates are 

2*2 reversible gates with quantum cost 1. In 

Controlled-V gate, if the control signal A = 0, then 

the second input B passes unchanged. However, if 

A = 1, then theunitary operation 
i+1

2
 
1 −𝑖
−𝑖 1

 is 

applied to theinput B. Controlled-V
†
 gate is simple 

the conjugate transpose of Controlled-V gate. 

Controlled-V and Controlled-V
†
 have the following 

properties 

V x V = NOT 

V x V
†
 = V

†
 x V = 1 

V
†
 x V

†
 = NOT 

Hence controlled-V is also called square root of 

NOT gate.Quantum implementation of V and V
†
 

are shown in Fig. 2 

 
Fig. 2. Quantum Implementation of Controlled-V 

and Controlled-V
†
 Gate 

C. Feynman Gate 

Fig. 3 shows the block diagram and the 

quantum implementation of Feynman Gate [8], also 

called Controlled-Not (CNOT) gate. It is a 2*2 gate 

and its quantum cost is 1. The inputs are A and B 

and the outputs P= A and Q = A ⊕ B. 

 
Fig. 3. Block diagram and Quantum representation 

of Feynman gate 

 

D. Peres gate 

Fig. 4 shows the block diagram and 

quantum realization of Peres Gate [9]. It is a 3*3 

gate with inputs A, B and C and the outputs P = A, 

Q = A ⊕ B and R = AB ⊕ C. Its quantum cost if 4 

since four 2*2 gates are required for its realization. 

 
Fig. 4. Block diagram and quantum representation 

of Peres gate. 

 

E. TR gate 

Fig. 5 shows the block diagram and 

quantum realization of TR Gate[10]. It is a 3*3 

gate with inputs A, B and C and outputs P = A, Q = 

A ⊕ B and R = AB’ ⊕ C. Its quantum cost is 4 

since four 2*2 gates are required for its realization. 

 
Fig. 5 Block diagram and quantum implementation 

of TR gate. 

 

F. Fredkin Gate 

Fig. 6 shows the block diagram and 

quantum realization of Fredkin Gate [11]. It is a 

3*3 gate with inputs A, B and C and inputs P = A, 

Q = AB + A’C and R = A’B + AC. Its quantum 

cost is 5 since five 2*2 gates are required for its 

realization. 

 
Fig. 6. Block diagram and quantum implementation 

of Fredkin Gate. 

 

III. SIMULATION RESULTS. 
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IV. SCHEMATIC 

W, X, Y, Z Are the inputs 

 

V. CONCLUSION 

In this article, we have proposed a novel 

design of 4:16. We have shown that the quantum 

cost of a n : 2n decoder will be less by 4 if we use 

our proposed 4:16 decoder block. 

The increase in the number of Fredkin 

gates is exponentially higher for increase in a 

single input. Though for n inputs, the number of 

outputs is 2 number of outputs, the increase in 

gates is linear. However, by using any other gates 

like Toffoli, Peres or TR gate, the number of gates 

will be twice as high and hence the quantum cost 

will be nearly twice. The number of garbage 

outputs also increases in the same manner since 

each Fredkin gate has one garbage output for this 

architecture. 

The generalised design cannot be 

optimised any further by using the basic gates like 

Peres, TR or Toffli. However, further research 

interest may be to propose new gates that can be 

used to replace Fredkin gates in higher dimensional 

decoders, resulting in decrease of quantum cost. 

 

REFERENCES 

[1]. R. Landauer, “Irreversibility and heat 

generation in the computing process”,IBM 

Journal of Research and Development, 

vol. 5, 1961, pp. 183-191. 

[2]. C. H. Bennett, “Logical reversibility of 

computations”, IBM Journal ofResearch 

and Development, vol. 17, 1973, pp. 525-

532. 

[3]. VlatkoVedral, Adriano Bareno, 

ArturEkert, “Quantum networks for 

elementaryarithmetic operations”, 

arXiv:quantph/ 9511018 v1, 

November1995. 

[4]. M. Mohammadi and M. Eshghi, “On 

figures of merit in reversible andquantum 

logic designs”, Quantum Information 

Processing, 8(4):297318,Aug. 2009.326 

[5]. H. G. Rangaraju, U. Venugopal, K. N. 

Muralidhara, K. B. Raja, “Lowpower 

reversible parallel binary 

adder/subtractor”, 

arXiv.org/1009.6218,2010. 

[6]. Vandana Shukla, O. P. Singh, G. R. 

Mishra, R. K. Tiwari, “Novel designof a 

4:1 multiplexer circuit using reversible 

logic”, International Journalof 

Computational Engineering Research, vol 

3, issue 10, Oct 2013. 

[7]. PayalGarg, Sandeep Saini, “A novel 

design of compact reversibleSG gate and 

its applications”, 2014 14th International 

Symposium onCommunications and 

Information Technologies (ISCIT), Sept 

2014, pages400-403, doi: 

10.1109/ISCIT.2014.7011941 

[8]. R. Feynman, “Quantum mechanical 

computers”, Optic News, vol. 11, pp.11-

20, 1985. 

[9]. A. Peres, “Reversible logic and quantum 

computers”, Phys. Rev. A, Gen.Phys., vol. 

32, no. 6, pp. 32663276, Dec. 1985. 

[10]. H. Thapliyal, N. Ranganathan, “A new 

design of the reversible subtractorcircuit”, 

doi: 10.1109/NANO.2011.6144350. 

[11]. T. Toffoli, “Reversible Computing”, Tech 

Memo MIT/LCS/TM-151, MITLab for 

Comp. Sci., 1980. 


